
Hedera Blockchain Services
“Modularization” Code review

Hedera Hashgraph
Version 2.0 – October 3, 2024

© NCC Group 2023

Prepared by NCC Group Security Services, Inc. for Hedera Hashgraph. Except as otherwise agreed in
writing, NCC Group makes no representations or warranties of any kind, express or implied, about the
accuracy or completeness of the information contained herein. Portions of this document and the
original templates used in its production are the intellectual property of NCC Group and cannot be used
or copied (in full or in part) without NCC Group’s permission.

NCC Group, the publisher and the author(s) assume no liability for errors and/or omissions in this
document, nor are they liable for any loss or damage resulting from the use of the information contained
herein. NCC Group provides no guarantees that its findings will prevent or avoid any future security
breaches or unauthorized access to the networks, systems, or physical locations to which those findings
relate.

Prepared By
Alvaro Lorenzo
Juan Jose Frias

Prepared For
Joe Blanchard

Michael Heinrichs

1 Executive Summary
Synopsis
During the summer of 2024, Hedera Hashgraph engaged NCC Group to conduct a security
assessment of Hedera. Hedera is a faster and more secure alternative to traditional
blockchains. Using Hashgraph consensus, it ensures efficient transaction verifications.
Users can access Hedera network services via APIs for tasks such as creating accounts,
minting tokens, and executing smart contracts.

Scope
NCC Group’s evaluation included:

hedera-node: Implements the Hedera cryptocurrency, consensus, smart contract, and
file services on the Platform.

Code Review was performed on one of the libraries hosted on https://github.com/
hashgraph/hedera-services/tree/develop/hedera-node.

A first thorough review was performed for the version tagged as v0.49.7 and a follow-up
assessment was conducted on version v0.54.0.

Key Findings
The assessment did not identify significant issues with the provided code base. A number of
Low and Informational findings have been detailed.

Of significance was the presence of a number of secrets being present, all of them unused
or part of test cases. However, it is still considered a good coding practice to remove
unused secrets from code bases, even if they don’t pose a risk.

Additionally, it was highlighted that the system allowed the creation of an unencrypted TCP
port, which, if used, could expose sensitive information. The responsibility of establishing
such an insecure connection would rest on users, and it is understood that this feature is
part of a business decision for compatibility. However, consideration should be given in the
future to disable this option as to further harden the solution.

Security Requirements
No evidence was found that the following security requirements were being violated by the
reviewed source code:

Security model rules highlighted on https://docs.hedera.com/hedera/core-concepts/
smart-contracts/security

Handling of system accounts as highlighted on https://github.com/hashgraph/hedera-
services/blob/develop/hedera-node/docs/system-accounts-operations.md

However, it should be noted that the smart contract review was outside the scope of this
assessment, as any source code outside the hedera-node element.

Strategic Recommendations
The code base should undergo an additional round of review once it reaches Release
Candidate status. Additionally, any new functionality should be individually assessed during
development once implemented.

•

•

•

2 / 21 – Executive Summary

https://docs.hedera.com/hedera/core-concepts/smart-contracts/security
https://docs.hedera.com/hedera/core-concepts/smart-contracts/security
https://github.com/hashgraph/hedera-services/blob/develop/hedera-node/docs/system-accounts-operations.md
https://github.com/hashgraph/hedera-services/blob/develop/hedera-node/docs/system-accounts-operations.md

2 Table of Contents
1 Executive Summary .. 2

1.1 Synopsis .. 2

1.2 Scope .. 2

1.3 Key Findings ... 2

1.4 Security Requirements .. 2

1.5 Strategic Recommendations .. 2

2 Table of Contents ... 3

3 Document Control .. 4

3.1 Public Distribution Notice .. 4

3.2 Proprietary Information ... 4

4 Table of Findings .. 5

5 Risk Ratings ... 6

6 Finding Details ... 8

7 Contact Info ... 21

3 / 21 – Table of Contents

3 Document Control
Public Distribution Notice
This document is intended for public distribution. However, its contents remain the property
of NCC Group and may not be reproduced, distributed, or shared without proper
acknowledgment.

Proprietary Information
While this document is intended for public distribution, specific sections may contain
proprietary information. Any proprietary content must not be disclosed or modified without
explicit permission.

NCC Group allows for this document to be shared freely for the purposes of public
awareness, organizational use, or reporting to relevant agencies, provided that the content
remains unchanged.

Document Data
Data Classification Client Confidential

Client Name Hedera Hashgraph

Project Reference E012962

Proposal Reference O-211117

Document Title Hedera Blockchain Services “Modularization” Code review

Author Alvaro Lorenzo

Document History
Version Issue Date Issued by Change Description

0.1 2024-06-04 Alvaro Lorenzo Draft for NCC Group internal review only

0.2 2024-07-10 Mario Rivas Revised QA

1.0 2024-07-10 Alvaro Lorenzo Released to client

2.0 2024-10-03 Alvaro Lorenzo Released to client

4 / 21 – Document Control

4 Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the
severity of the risk, application’s exposure and user population, technical difficulty of
exploitation, and other factors.

Title Status ID Risk

Code Comments Suggest Incomplete or Missing Code New CWC Low

Unencrypted Communications Supported New MYU Low

Private Keys Present in Test Code New 4G3 Low

Empty “Case” Statement New 3E2 Info

Empty “Catch” Statements New 99E Info

Unused or Deprecated Code New U96 Info

Hard-Coded Secrets in Test Code New AQW Info

Docker Container Running as Root New KQR Info

5 / 21 – Table of Findings

5 Risk Ratings
The table below gives a key to the ratings used throughout this report to provide a clear and
concise risk scoring system.

It should be stressed that quantifying the overall business risk posed by any of the issues
found in any test is outside our remit. This means that some risks may be reported as high
from a technical perspective but may, as a result of other controls unknown to us, be
considered acceptable.

Risk Rating CVSS Score Explanation

Critical 9.0 - 10 A vulnerability was discovered that has been rated as critical.
This requires resolution as quickly as possible.

High 7.0 - 8.9 A vulnerability was discovered that has been rated as high. This
requires resolution in the short term.

Medium 4.0 - 6.9 A vulnerability was discovered that has been rated as medium.
This should be resolved as part of the ongoing security
maintenance of the system.

Low 1.0 - 3.9 A vulnerability was discovered that has been rated as low. This
should be addressed as part of routine maintenance tasks.

Info 0 - 0.9 A discovery was made that is reported for information. This
should be addressed in order to meet leading practice.

Impact
Impact reflects the effects that successful exploitation has upon the target system or
systems. It takes into account potential losses of confidentiality, integrity and availability, as
well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on
the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny
access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly
degrade system performance. May have a negative public perception of
security.

6 / 21 – Risk Ratings

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into
account the level of access required, availability of exploitation information, requirements
relating to social engineering, race conditions, brute forcing, etc, and other impediments to
exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or
significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information,
exploit a race condition, already have privileged access, or otherwise
overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,
guessing difficult-to-guess data, or is otherwise unlikely.

7 / 21 – Risk Ratings

6 Finding Details

Code Comments Suggest Incomplete or
Missing Code
Overall Risk Low

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-E012962-CWC

Component Code Review

Category Other

Status New

Impact
Code comments that indicate that functionality is incomplete or broken may lead to
scenarios where security critical areas, that may prevent a vulnerability or improve the
security of the solution, are left missing and otherwise forgotten about.

Description
A search for code comments with the terms “FIXME” or “TODO” and derivatives thereof
identified a number of instances where developers have noted incomplete or missing code.
Such comments usually indicate that further work is needed to implement a feature or, more
often, to fix bugs and introduce error checking. These code changes or additions are often
not made, and these sections of code can lead to erroneous or vulnerable behavior.

The following keywords were searched for within the code base:

TODO (168)

FIXME (1)

HACK (14)

Recommendation
Review all instances of FIXME, TODO, and other such comments identified above, and
implement the necessary code changes and additions in order to improve the overall
robustness of the application.1

Where changes are not able to be implemented in a timely manner, said missing or broken
functionality should be formally tracked within the development team’s issue/bug tracking
system.

Consider using static anaylsis to track when such comments are added to code to prevent
their usage and ensure they are captured in the development backlog instead.

Low

•

•

•

// Create all the nodes in the merkle tree for all the services

// TODO: Actually, we should reinitialize the config on each step along the migration

path, so we should pass

// the config provider to the migration code and let it get the right version of

config as it goes.

onMigrate(state, deserializedVersion, trigger, metrics);

if (trigger == EVENT_STREAM_RECOVERY) {

// (FUTURE) Dump post-migration mod-service state

}

1. Todo Comments Considered Harmful: https://c2.com/cgi/wiki?TodoCommentsConsideredHarmful

8 / 21 – Finding Details

https://c2.com/cgi/wiki?TodoCommentsConsideredHarmful
https://c2.com/cgi/wiki?TodoCommentsConsideredHarmful

Unencrypted Communications Supported
Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E012962-MYU

Component Code Review

Category Cryptography

Status New

Description
The ConfigDrivenNettyFactory class implemented at \hedera-services\hedera-node\hedera-
mono-

service\src\main\java\com\hedera\node\app\service\mono\grpc\ConfigDrivenNettyFactory.jav

a could spawn Netty Servers without TLS enabled.

This class, and the builderFor method it contains, were referenced once in the source
code, from the startOneNettyServer method in the NettyGrpcServerManager class, which in
turn was called from the start method of the same class and from test code. For clarity, the
following is the code snippet that shows the mentioned functionality:

Low

@Override

public void start(int port, int tlsPort, Consumer println) {

try {

hookAdder.accept(new Thread(() -> terminateNetty(port, tlsPort, println)));

server = startOneNettyServer(false, port, println, SLEEPING_PAUSE);

tlsServer = startOneNettyServer(true, tlsPort, println, SLEEPING_PAUSE);

} catch (FileNotFoundException fnfe) {

tlsServer = null;

String message = nettyAction("Could not start", true, tlsPort, false);

log.warn("{} ({}).", message, fnfe.getMessage());

println.accept(message);

} catch (Exception e) {

throw new IllegalStateException(e);

}

}

Server startOneNettyServer(boolean sslEnabled, int port, Consumer println, Pause pause)

throws IOException {

println.accept(nettyAction("Starting", sslEnabled, port, true));

NettyServerBuilder builder = nettyBuilder.builderFor(port, sslEnabled);

bindableServices.forEach(builder::addService);

Server nettyServer = builder.build();

var retryNo = 1;

final var n = Math.max(0, startRetries);

for (; retryNo <= n; retryNo++) {

try {

nettyServer.start();

break;

} catch (IOException e) {

final var summaryMsg = nettyAction("Still trying to start", sslEnabled, port,

true);

log.warn("(Attempts={}) {}", retryNo, summaryMsg, e);

pause.forMs(startRetryIntervalMs);

}

9 / 21 – Finding Details

As a result, the NettyGrpcServerManager class was exposing encrypted and plaintext ports
when spawning the server.

While the decision of connecting through an encrypted or unencrypted port lays ultimately
on the client establishing the connection, offering an unencrypted option increases the
likeliness that a client might choose the unsafe port.

Recommendation
Remove the option to start Netty servers without TLS to ensure all connections are
encrypted.

Location
\hedera-services\hedera-node\hedera-mono-
service\src\main\java\com\hedera\node\app\service\mono\grpc\ConfigDrivenNettyFactor
y.java

•

}

if (retryNo == n + 1) {

nettyServer.start();

}

10 / 21 – Finding Details

Private Keys Present in Test Code
Overall Risk Low

Impact Undetermined

Exploitability Low

Finding ID NCC-E012962-4G3

Component Code Review

Category Data Exposure

Status New

Description
Several .pem and .key files containing private encryption keys were found in the code base.
While these keys seemed to be used as part of test code, as opposed to the application,
they should still be considered sensitive secrets and treated accordingly.

It should also be noted that in one specific instance, the key was in a path not explicitly
marked as “test”, which could point at it potentially being used for cases beyond testing.

This issue has been rated as Low on the premise that the impact is unknown.

Recommendation
Secrets should not be stored in code repositories. Instead, they should be stored separately,
ideally in a password vault or storage mechanism designed for the purpose. The passwords
currently stored in the code should be considered compromised and should be rotated as
they are removed from the code base and transferred into the appropriate secret
management platform.2 3 4

It would be prudent to integrate a static analysis process into the CI/CD pipeline or
development process to ensure that credentials are kept out of code in the future. Any
secrets that are committed to source and detected should be eliminated from the source
should be rotated, as source control servers will retain the historical data.

Location
\hedera-services\hedera-node\test-clients\yahcli\localhost\keys\account2.pem

\hedera-services\hedera-node\test-clients\yahcli\localhost\keys\account55.pem

\hedera-services\hedera-node\test-clients\devGenesisKeypair.pem

\hedera-services\hedera-node\data\onboard\devGenesisKeypair.pem

\hedera-services\hedera-node\hapi-utils\src\test\resources\vectors\genesis.pem

\hedera-services\hedera-node\test-clients\src\main\resource\genesis.pem

\hedera-services\hedera-node\hedera-mono-service\src\test\resources\test-hedera.key

Low

•

•

•

•

•

•

•

2. Hardcoded Credentials Example: https://nakedsecurity.sophos.com/2014/04/03/is-amazon-
hacking-our-apps-or-doing-us-all-a-security-favor/
3. SANS Top 25 Software Flaws: Number 11, Hardcoded Credentials: https://www.sans.org/blog/
top-25-series-rank-11-hardcoded-credentials/
4. CWE-798: Use of Hard-Coded Credentials: https://cwe.mitre.org/data/definitions/798.html

11 / 21 – Finding Details

https://nakedsecurity.sophos.com/2014/04/03/is-amazon-hacking-our-apps-or-doing-us-all-a-security-favor/
https://nakedsecurity.sophos.com/2014/04/03/is-amazon-hacking-our-apps-or-doing-us-all-a-security-favor/
https://www.sans.org/blog/top-25-series-rank-11-hardcoded-credentials/
https://www.sans.org/blog/top-25-series-rank-11-hardcoded-credentials/
https://cwe.mitre.org/data/definitions/798.html

Empty “Case” Statement
Overall Risk Informational

Impact Low

Exploitability Low

Finding ID NCC-E012962-3E2

Component Code Review

Category Uncategorized

Status New

Description
A number of “case” statements without an associated action were discovered during the
code review. While not in itself a security concern, this can indicate incomplete, unfinished,
or untested code.

An example snippet from the application code is shown below (truncated for readability):

Empty “case” statements usually indicate areas where developers have not yet implemented
functionality, fixed bugs, or introduced error checking. These changes are often left
incomplete, and such sections of code often lead to erroneous or vulnerable behavior,
though no such problems were noted during this assessment.

It was acknowledged by the engineering team that most these cases were explicitly
included for clarity and future reference, so that developers know exactly for which cases
actions should not be taken. For this reason, this issue is rated as Informational only.

Recommendation
Superfluous “case” statements should be removed or commented out as required.5

Info

switch (sigType) {

case ED25519 -> {

// Only match ED25519 signatures with ED25519 keys.

final var matchingKeyType = key.key().kind() == KeyOneOfType.ED25519;

// Valid ED25519 keys have a max length of 32 bytes.

final var validPrefixLength = prefix.length() <= ED25519_KEY_LENGTH;

if (matchingKeyType

&& validPrefixLength

&& key.ed25519OrThrow().matchesPrefix(prefix)) {

return pair;

}

}

case ECDSA_SECP256K1 -> {

// Only match ECDSA_SECP256K1 signatures with ECDSA_SECP256K1 keys.

final var matchingKeyType = key.key().kind() == KeyOneOfType.ECDSA_SECP256K1;

// Valid ECDSA_SECP256K1 keys have a max length of 33 bytes.

final var validPrefixLength = prefix.length() <= ECDSA_COMPRESSED_KEY_LENGTH;

if (matchingKeyType

&& validPrefixLength

&& key.ecdsaSecp256k1OrThrow().matchesPrefix(prefix)) {

return pair;

}

}

case CONTRACT, ECDSA_384, RSA_3072, UNSET -> {

// Skip these signature types. They never match.

}

12 / 21 – Finding Details

Location
\hedera-node\hedera-app\src\main\java\com\hedera\node\app\signature\impl\SignatureE
xpanderImpl.java

•

5. Stack Overflow: How to Mark an Empty Conditional Block in Java: http://
programmers.stackexchange.com/questions/120658/how-to-mark-an-empty-conditional-block-in-
java

13 / 21 – Finding Details

http://programmers.stackexchange.com/questions/120658/how-to-mark-an-empty-conditional-block-in-java
http://programmers.stackexchange.com/questions/120658/how-to-mark-an-empty-conditional-block-in-java
http://programmers.stackexchange.com/questions/120658/how-to-mark-an-empty-conditional-block-in-java

Empty “Catch” Statements
Overall Risk Informational

Impact Low

Exploitability Low

Finding ID NCC-E012962-99E

Component Code Review

Category Auditing and Logging

Status New

Description
The codebase contained instances of empty catch blocks. Empty catch statements are
generally considered poor coding practice, as the program is silently swallowing an error
condition and then continuing execution. Failures that are met with no response should be
avoided.

In general, if a catch statement has been reached, the program should at the very least log
the error to a file, allowing the error to be identified later.

As an example, the following empty catch block was found within the code base:

The engineering team clarified that these catches were explicitly coded to handled checked
exceptions, which would prevent the program from compiling. In the above snippet,
ParseException is required to either be caught or thrown in order for the program to compile.

However, it should be noted that NullPointerException is not a checked exception, which
means that the above rationale would not apply to it.

The chances of exploiting this issue are negligible, and it has been reported for
Informational purposes only.

Recommendation
Ensure that all conditions are met with a suitable response. A trivial example, in which a non-
existent file is read, is given below:6

Info

private void addByteSource(@NonNull final ConfigurationBuilder builder, @NonNull final Bytes

propertyFileContent) {

requireNonNull(builder);

requireNonNull(propertyFileContent);

try {

final var configurationList =

ServicesConfigurationList.PROTOBUF.parseStrict(propertyFileContent.toReadable

SequentialData());

final var configSource = new

SettingsConfigSource(configurationList.nameValueOrThrow(), 101);

builder.withSource(configSource);

} catch (ParseException | NullPointerException e) {

// Ignore. This method may be called with a partial file during regular execution.

}

}

try

{

using (StreamReader reader = new StreamReader(@"log.txt"))

{

6. Why are empty catch blocks a bad idea?: https://stackoverflow.com/questions/1234343/why-are-
empty-catch-blocks-a-bad-idea

14 / 21 – Finding Details

https://stackoverflow.com/questions/1234343/why-are-empty-catch-blocks-a-bad-idea
https://stackoverflow.com/questions/1234343/why-are-empty-catch-blocks-a-bad-idea

Location
hedera-node\hedera-
app\src\main\java\com\hedera\node\app\config\ConfigProviderImpl.java

hedera-node\hedera-mono-
service\src\main\java\com\hedera\node\app\service\mono\legacy\core\jproto\JKey.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\junit\RecordStreamAccess.java

hedera-node\test-clients\src\main\java\com\hedera\services\bdd\junit\SubProcessHapiTe
stNode.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\spec\HapiPropertySource.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\spec\HapiSpecOperation.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\spec\PropertySource.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\spec\infrastructure\HapiSpecRegistry.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\spec\infrastructure\selectors\RandomSele
ctor.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\spec\transactions\crypto\HapiCryptoTrans
fer.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\spec\transactions\token\HapiTokenCreate
.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\spec\transactions\token\HapiTokenMint.ja
va

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\spec\utilops\ProviderRun.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\spec\utilops\RunLoadTest.java

hedera-node\test-clients\src\main\java\com\hedera\services\bdd\suites\freeze\Common
UpgradeResources.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\suites\issues\Issue305Spec.java

hedera-node\test-
clients\src\main\java\com\hedera\services\bdd\suites\utils\validation\ValidationScenarios.j
ava

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

reader.ReadToEnd();

}

}

catch (FileNotFoundException e)

{

Console.WriteLine("File not found exception: {0}", e.ToString());

}

15 / 21 – Finding Details

hedera-node\test-
clients\src\yahcli\java\com\hedera\services\yahcli\config\ConfigUtils.java

•

16 / 21 – Finding Details

Unused or Deprecated Code
Overall Risk Informational

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-E012962-U96

Component Code Review

Category Unwanted Software

Status New

Description
During the review of the source code, instances of what seemed like hard-coded secrets
were identified and forwarded to the engineering team. After reviewing the provided
evidence, the team pointed out that it was unused code that would be removed in future
refactoring passes.

Examples of the provided snippets can be seen below, and a list of affected files in the
Location subsection below:

Figure 1: Key set from a string of multiple “a” characters

Figure 2: Passphrase for key stores set to “password”

Given that this code is unused and scheduled to be removed, this issue has been rated as
Informational only.

Recommendation
Remove all unused code and files from the repository. When refactoring, consider adding
elements as needed as opposed to trimming unused elements, to prevent missed pieces of
code.

Ensure that the listed secrets are not used elsewhere or pose a risk if disclosed. If used,
replace them with stronger ones and ensure that they are not present in the repository.

Location
\hedera-services\hedera-node\cli-
clients\src\test\java\com.hedera.services.cli.sign.test\TestUtils.java

\hedera-services\hedera-node\data\keys\generate.sh

\hedera-services\hedera-node\data\keys\generate.bat

\hedera-services\hedera-node\hapi-
fees\src\main\java\com\hedera\node\app\hapi\fees\pricing\BaseOperationUsage.java

\hedera-services\hedera-node\hapi-
utils\src\main\java\com\hedera\node\app\hapi\utils\exports\FileSignTool.java

Info

•

•

•

•

•

17 / 21 – Finding Details

Hard-Coded Secrets in Test Code
Overall Risk Informational

Impact N/A

Exploitability N/A

Finding ID NCC-E012962-AQW

Component Code Review

Category Data Exposure

Status New

Description
Inspection of the code revealed that secrets were hard coded within code and configuration
files. The presence of hard coded secrets means that anyone with access to the affected
source code repositories or the compiled binaries and scripts could potentially gain control
over the affected services and environments by using those secrets. In addition, hard coded
secrets are not changeable without modifying the code. This presents an additional security
problem because it is no longer possible for a user or administrator of the system to change
the secret in question without potentially breaking some aspect of functionality. Proper
rotation of credentials becomes more difficult if they are spread across different code
bases, including various versions and branches of the same code base. Furthermore,
propagation of such secrets to source control places a significant security burden on the
development & build of infrastructure and makes the insider threat scenario almost
impossible to mitigate.

The code base included test functionality which used a simple passphrase to encrypt .pem
files:

This issue has been rated as Informational only, based on it affecting only test code.

Recommendation
Secrets should not be stored in code repositories. Instead, they should be stored separately,
ideally in a password vault or storage mechanism designed for the purpose. The passwords
currently stored in the code should be considered compromised and should be rotated as
they are removed from the code base and transferred into the appropriate secret
management platform.7 8 9

It would be prudent to integrate a static analysis process into the CI/CD pipeline or
development process to ensure that credentials are kept out of code in the future. Any

Info

default.payer.name=DEFAULT_PAYER

default.payer.pemKeyLoc=src/main/resource/genesis.pem

#default.payer.pemKeyLoc=previewtestnet-account2.pem

#default.payer.pemKeyLoc=stabletestnet-account50.pem

#default.payer.pemKeyLoc=mainnet-account950.pem

default.payer.pemKeyPassphrase=

default.proxy=n/a

default.queueSaturation.ms=100

default.realm=0

default.receiverSigRequired=false

7. Hardcoded Credentials Example: https://nakedsecurity.sophos.com/2014/04/03/is-amazon-
hacking-our-apps-or-doing-us-all-a-security-favor/
8. SANS Top 25 Software Flaws: Number 11, Hardcoded Credentials: https://www.sans.org/blog/
top-25-series-rank-11-hardcoded-credentials/
9. CWE-798: Use of Hard-Coded Credentials: https://cwe.mitre.org/data/definitions/798.html

18 / 21 – Finding Details

https://nakedsecurity.sophos.com/2014/04/03/is-amazon-hacking-our-apps-or-doing-us-all-a-security-favor/
https://nakedsecurity.sophos.com/2014/04/03/is-amazon-hacking-our-apps-or-doing-us-all-a-security-favor/
https://www.sans.org/blog/top-25-series-rank-11-hardcoded-credentials/
https://www.sans.org/blog/top-25-series-rank-11-hardcoded-credentials/
https://cwe.mitre.org/data/definitions/798.html

secrets that are committed to source and detected should be eliminated from the source
should be rotated, as source control servers will retain the historical data.

Location
\hedera-services\hedera-node\test-clients\src\main\resource\spec-default.properties

\hedera-services\hedera-node\test-clients\puv\localhost-entities\puvCatBeneficiary.yaml

\hedera-services\hedera-node\test-clients\puv\localhost-entities\puvCatToken.yaml

\hedera-services\hedera-node\test-clients\puv\localhost-
entities\puvTacoBeneficiary.yaml

\hedera-services\hedera-node\test-clients\puv\localhost-entities\puvTacoToken.yaml

\hedera-services\hedera-node\test-clients\puv\localhost-entities\puvTreasury.yaml

•

•

•

•

•

•

19 / 21 – Finding Details

Docker Container Running as Root
Overall Risk Informational

Impact Medium

Exploitability Low

Finding ID NCC-E012962-KQR

Component Code Review

Category Configuration

Status New

Description
Several Docker images did not make use of the USER directive to specify an account for the
operation of containers. As a result, those containers will run as the ‘root’ user (this is the
default setting) which could make it easier for an attacker with access to the containers to
break out to the underlying host. A less privileged non-root user should be specified instead.

Since it was unknown whether User Namespaces were enabled for these instances, and this
finding has been raised as informational

Recommendation
Review the affected image files and modify them to specify a user for operation of
containers based on them. All Docker images should make use of the USER directive, or
switch to another user as part of the CMD or ENTRYPOINT commands, to ensure that they
run as a nominated user and not as the default root user.

For added security, consider adopting user namespaces to mitigate the risk of container
breakout issues. This should be considered for applications which require running as root.

This can be achieved with the following command: 10

Location
\hedera-services\hedera-node\test-clients\yahcli\Dockerfile

\hedera-services\hedera-node\test-clients\validation-scenarios\Dockerfile

\hedera-services\hedera-node\docker\Dockerfile

\hedera-services\hedera-node\infrastructure\docker\containers\production\network-
node-haveged\Dockerfile

\hedera-services\hedera-node\infrastructure\docker\containers\production\network-
node-base\Dockerfile

\hedera-services\hedera-node\infrastructure\docker\containers\local-node\network-
node-base\Dockerfile

\hedera-services\hedera-node\infrastructure\docker\containers\local-node\network-
node-haveged\Dockerfile

Info

•

•

•

•

•

•

•

$ docker run --user <user> <image>

10. Docker Article: USER Directive: https://docs.docker.com/engine/reference/builder/#user

20 / 21 – Finding Details

7 Contact Info
The team from NCC Group has the following primary members:

Alvaro Lorenzo – Executive Principal Security Consultant
alvaro.lorenzo@nccgroup.com

Juan Jose Frias – Senior Security Consultant
juanjose.frias@nccgroup.com

The team from Hedera Hashgraph has the following primary members:

Michael Heinrichs – Hedera Hashgraph
michael@hashgraph.com

Joe Blanchard – Hedera Hashgraph
joe@hashgraph.com

•

•

•

•

21 / 21 – Contact Info

mailto:alvaro.lorenzo@nccgroup.com
mailto:juanjose.frias@nccgroup.com
mailto:michael@hashgraph.com
mailto:joe@hashgraph.com

	Title Page
	Executive Summary
	Synopsis
	Scope
	Key Findings
	Security Requirements
	Strategic Recommendations

	Table of Contents
	Document Control
	Public Distribution Notice
	Proprietary Information
	Document Data
	Document History

	Table of Findings
	Risk Ratings
	Finding Details
	Code Comments Suggest Incomplete or Missing Code
	Unencrypted Communications Supported
	Private Keys Present in Test Code
	Empty “Case” Statement
	Empty “Catch” Statements
	Unused or Deprecated Code
	Hard-Coded Secrets in Test Code
	Docker Container Running as Root

	Contact Info

